检测/分割/跟踪


2022-03-01 更新

DGSS : Domain Generalized Semantic Segmentation using Iterative Style Mining and Latent Representation Alignment

Authors:Pranjay Shyam, Antyanta Bangunharcana, Kuk-Jin Yoon, Kyung-Soo Kim

Semantic segmentation algorithms require access to well-annotated datasets captured under diverse illumination conditions to ensure consistent performance. However, poor visibility conditions at varying illumination conditions result in laborious and error-prone labeling. Alternatively, using synthetic samples to train segmentation algorithms has gained interest with the drawback of domain gap that results in sub-optimal performance. While current state-of-the-art (SoTA) have proposed different mechanisms to bridge the domain gap, they still perform poorly in low illumination conditions with an average performance drop of - 10.7 mIOU. In this paper, we focus upon single source domain generalization to overcome the domain gap and propose a two-step framework wherein we first identify an adversarial style that maximizes the domain gap between stylized and source images. Subsequently, these stylized images are used to categorically align features such that features belonging to the same class are clustered together in latent space, irrespective of domain gap. Furthermore, to increase intra-class variance while training, we propose a style mixing mechanism wherein the same objects from different styles are mixed to construct a new training image. This framework allows us to achieve a domain generalized semantic segmentation algorithm with consistent performance without prior information of the target domain while relying on a single source. Based on extensive experiments, we match SoTA performance on SYNTHIA $\to$ Cityscapes, GTAV $\to$ Cityscapes while setting new SoTA on GTAV $\to$ Dark Zurich and GTAV $\to$ Night Driving benchmarks without retraining.
PDF

论文截图

Weakly Supervised Instance Segmentation using Motion Information via Optical Flow

Authors:Jun Ikeda, Junichiro Mori

Weakly supervised instance segmentation has gained popularity because it reduces high annotation cost of pixel-level masks required for model training. Recent approaches for weakly supervised instance segmentation detect and segment objects using appearance information obtained from a static image. However, it poses the challenge of identifying objects with a non-discriminatory appearance. In this study, we address this problem by using motion information from image sequences. We propose a two-stream encoder that leverages appearance and motion features extracted from images and optical flows. Additionally, we propose a novel pairwise loss that considers both appearance and motion information to supervise segmentation. We conducted extensive evaluations on the YouTube-VIS 2019 benchmark dataset. Our results demonstrate that the proposed method improves the Average Precision of the state-of-the-art method by 3.1.
PDF 5 pages, 3 figures, submitted to the 29th IEEE International Conference on Image Processing (ICIP)

论文截图

Analysis of Visual Reasoning on One-Stage Object Detection

Authors:Tolga Aksoy, Ugur Halici

Current state-of-the-art one-stage object detectors are limited by treating each image region separately without considering possible relations of the objects. This causes dependency solely on high-quality convolutional feature representations for detecting objects successfully. However, this may not be possible sometimes due to some challenging conditions. In this paper, the usage of reasoning features on one-stage object detection is analyzed. We attempted different architectures that reason the relations of the image regions by using self-attention. YOLOv3-Reasoner2 model spatially and semantically enhances features in the reasoning layer and fuses them with the original convolutional features to improve performance. The YOLOv3-Reasoner2 model achieves around 2.5% absolute improvement with respect to baseline YOLOv3 on COCO in terms of mAP while still running in real-time.
PDF Submitted to IEEE International Conference on Image Processing (ICIP) 2022

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录