2022-02-23 更新
UniFormer: Unifying Convolution and Self-attention for Visual Recognition
Authors:Kunchang Li, Yali Wang, Junhao Zhang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, Yu Qiao
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision transformers (ViTs) have been two dominant frameworks in the past few years. Though CNNs can efficiently decrease local redundancy by convolution within a small neighborhood, the limited receptive field makes it hard to capture global dependency. Alternatively, ViTs can effectively capture long-range dependency via self-attention, while blind similarity comparisons among all the tokens lead to high redundancy. To resolve these problems, we propose a novel Unified transFormer (UniFormer), which can seamlessly integrate the merits of convolution and self-attention in a concise transformer format. Different from the typical transformer blocks, the relation aggregators in our UniFormer block are equipped with local and global token affinity respectively in shallow and deep layers, allowing to tackle both redundancy and dependency for efficient and effective representation learning. Finally, we flexibly stack our UniFormer blocks into a new powerful backbone, and adopt it for various vision tasks from image to video domain, from classification to dense prediction. Without any extra training data, our UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks, e.g., it obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600, 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks, 53.8 box AP and 46.4 mask AP on COCO object detection task, 50.8 mIoU on ADE20K semantic segmentation task, and 77.4 AP on COCO pose estimation task. Code is available at https://github.com/Sense-X/UniFormer.
PDF 16 pages, 9 figures, 17 tables. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
论文截图
Vision Transformer with Deformable Attention
Authors:Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, Gao Huang
Transformers have recently shown superior performances on various vision tasks. The large, sometimes even global, receptive field endows Transformer models with higher representation power over their CNN counterparts. Nevertheless, simply enlarging receptive field also gives rise to several concerns. On the one hand, using dense attention e.g., in ViT, leads to excessive memory and computational cost, and features can be influenced by irrelevant parts which are beyond the region of interests. On the other hand, the sparse attention adopted in PVT or Swin Transformer is data agnostic and may limit the ability to model long range relations. To mitigate these issues, we propose a novel deformable self-attention module, where the positions of key and value pairs in self-attention are selected in a data-dependent way. This flexible scheme enables the self-attention module to focus on relevant regions and capture more informative features. On this basis, we present Deformable Attention Transformer, a general backbone model with deformable attention for both image classification and dense prediction tasks. Extensive experiments show that our models achieve consistently improved results on comprehensive benchmarks. Code is available at https://github.com/LeapLabTHU/DAT.
PDF 12 pages, 7 figures