GAN


2022-02-23 更新

Region-Based Semantic Factorization in GANs

Authors:Jiapeng Zhu, Yujun Shen, Yinghao Xu, Deli Zhao, Qifeng Chen

Despite the rapid advancement of semantic discovery in the latent space of Generative Adversarial Networks (GANs), existing approaches either are limited to finding global attributes or rely on a number of segmentation masks to identify local attributes. In this work, we present a highly efficient algorithm to factorize the latent semantics learned by GANs concerning an arbitrary image region. Concretely, we revisit the task of local manipulation with pre-trained GANs and formulate region-based semantic discovery as a dual optimization problem. Through an appropriately defined generalized Rayleigh quotient, we manage to solve such a problem without any annotations or training. Experimental results on various state-of-the-art GAN models demonstrate the effectiveness of our approach, as well as its superiority over prior arts regarding precise control, region robustness, speed of implementation, and simplicity of use.
PDF

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录