2022-02-19 更新
Adversarial Example Detection for DNN Models: A Review and Experimental Comparison
Authors:Ahmed Aldahdooh, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Deforges
Deep learning (DL) has shown great success in many human-related tasks, which has led to its adoption in many computer vision based applications, such as security surveillance systems, autonomous vehicles and healthcare. Such safety-critical applications have to draw their path to success deployment once they have the capability to overcome safety-critical challenges. Among these challenges are the defense against or/and the detection of the adversarial examples (AEs). Adversaries can carefully craft small, often imperceptible, noise called perturbations to be added to the clean image to generate the AE. The aim of AE is to fool the DL model which makes it a potential risk for DL applications. Many test-time evasion attacks and countermeasures,i.e., defense or detection methods, are proposed in the literature. Moreover, few reviews and surveys were published and theoretically showed the taxonomy of the threats and the countermeasure methods with little focus in AE detection methods. In this paper, we focus on image classification task and attempt to provide a survey for detection methods of test-time evasion attacks on neural network classifiers. A detailed discussion for such methods is provided with experimental results for eight state-of-the-art detectors under different scenarios on four datasets. We also provide potential challenges and future perspectives for this research direction.
PDF Accepted and published in Artificial Intelligence Review journal
论文截图
Morphence: Moving Target Defense Against Adversarial Examples
Authors:Abderrahmen Amich, Birhanu Eshete
Robustness to adversarial examples of machine learning models remains an open topic of research. Attacks often succeed by repeatedly probing a fixed target model with adversarial examples purposely crafted to fool it. In this paper, we introduce Morphence, an approach that shifts the defense landscape by making a model a moving target against adversarial examples. By regularly moving the decision function of a model, Morphence makes it significantly challenging for repeated or correlated attacks to succeed. Morphence deploys a pool of models generated from a base model in a manner that introduces sufficient randomness when it responds to prediction queries. To ensure repeated or correlated attacks fail, the deployed pool of models automatically expires after a query budget is reached and the model pool is seamlessly replaced by a new model pool generated in advance. We evaluate Morphence on two benchmark image classification datasets (MNIST and CIFAR10) against five reference attacks (2 white-box and 3 black-box). In all cases, Morphence consistently outperforms the thus-far effective defense, adversarial training, even in the face of strong white-box attacks, while preserving accuracy on clean data.
PDF
论文截图
An Eye for an Eye: Defending against Gradient-based Attacks with Gradients
Authors:Hanbin Hong, Yuan Hong, Yu Kong
Deep learning models have been shown to be vulnerable to adversarial attacks. In particular, gradient-based attacks have demonstrated high success rates recently. The gradient measures how each image pixel affects the model output, which contains critical information for generating malicious perturbations. In this paper, we show that the gradients can also be exploited as a powerful weapon to defend against adversarial attacks. By using both gradient maps and adversarial images as inputs, we propose a Two-stream Restoration Network (TRN) to restore the adversarial images. To optimally restore the perturbed images with two streams of inputs, a Gradient Map Estimation Mechanism is proposed to estimate the gradients of adversarial images, and a Fusion Block is designed in TRN to explore and fuse the information in two streams. Once trained, our TRN can defend against a wide range of attack methods without significantly degrading the performance of benign inputs. Also, our method is generalizable, scalable, and hard to bypass. Experimental results on CIFAR10, SVHN, and Fashion MNIST demonstrate that our method outperforms state-of-the-art defense methods.
PDF
论文截图
Adversarial Rain Attack and Defensive Deraining for DNN Perception
Authors:Liming Zhai, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Lei Ma, Wei Feng, Shengchao Qin, Yang Liu
Rain often poses inevitable threats to deep neural network (DNN) based perception systems, and a comprehensive investigation of the potential risks of the rain to DNNs is of great importance. However, it is rather difficult to collect or synthesize rainy images that can represent all rain situations that would possibly occur in the real world. To this end, in this paper, we start from a new perspective and propose to combine two totally different studies, i.e., rainy image synthesis and adversarial attack. We first present an adversarial rain attack, with which we could simulate various rain situations with the guidance of deployed DNNs and reveal the potential threat factors that can be brought by rain. In particular, we design a factor-aware rain generation that synthesizes rain streaks according to the camera exposure process and models the learnable rain factors for adversarial attack. With this generator, we perform the adversarial rain attack against the image classification and object detection. To defend the DNNs from the negative rain effect, we also present a defensive deraining strategy, for which we design an adversarial rain augmentation that uses mixed adversarial rain layers to enhance deraining models for downstream DNN perception. Our large-scale evaluation on various datasets demonstrates that our synthesized rainy images with realistic appearances not only exhibit strong adversarial capability against DNNs, but also boost the deraining models for defensive purposes, building the foundation for further rain-robust perception studies.
PDF
论文截图
Towards Transferable Unrestricted Adversarial Examples with Minimum Changes
Authors:Fangcheng Liu, Chao Zhang, Hongyang Zhang
Transfer-based adversarial example is one of the most important classes of black-box attacks. However, there is a trade-off between transferability and imperceptibility of the adversarial perturbation. Prior work in this direction often requires a fixed but large $\ellp$-norm perturbation budget to reach a good transfer success rate, leading to perceptible adversarial perturbations. On the other hand, most of the current unrestricted adversarial attacks that aim to generate semantic-preserving perturbations suffer from weaker transferability to the target model. In this work, we propose a geometry-aware framework to generate transferable adversarial examples with minimum changes. Analogous to model selection in statistical machine learning, we leverage a validation model to select the optimal perturbation budget for each image under both the $\ell{\infty}$-norm and unrestricted threat models. Extensive experiments verify the effectiveness of our framework on balancing imperceptibility and transferability of the crafted adversarial examples. The methodology is the foundation of our entry to the CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet, in which we ranked 1st place out of 1,559 teams and surpassed the runner-up submissions by 4.59% and 23.91% in terms of final score and average image quality level, respectively. Code is available at https://github.com/Equationliu/GA-Attack.
PDF First place in the CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet
论文截图
Parallel Rectangle Flip Attack: A Query-based Black-box Attack against Object Detection
Authors:Siyuan Liang, Baoyuan Wu, Yanbo Fan, Xingxing Wei, Xiaochun Cao
Object detection has been widely used in many safety-critical tasks, such as autonomous driving. However, its vulnerability to adversarial examples has not been sufficiently studied, especially under the practical scenario of black-box attacks, where the attacker can only access the query feedback of predicted bounding-boxes and top-1 scores returned by the attacked model. Compared with black-box attack to image classification, there are two main challenges in black-box attack to detection. Firstly, even if one bounding-box is successfully attacked, another sub-optimal bounding-box may be detected near the attacked bounding-box. Secondly, there are multiple bounding-boxes, leading to very high attack cost. To address these challenges, we propose a Parallel Rectangle Flip Attack (PRFA) via random search. We explain the difference between our method with other attacks in Fig.~\ref{fig1}. Specifically, we generate perturbations in each rectangle patch to avoid sub-optimal detection near the attacked region. Besides, utilizing the observation that adversarial perturbations mainly locate around objects’ contours and critical points under white-box attacks, the search space of attacked rectangles is reduced to improve the attack efficiency. Moreover, we develop a parallel mechanism of attacking multiple rectangles simultaneously to further accelerate the attack process. Extensive experiments demonstrate that our method can effectively and efficiently attack various popular object detectors, including anchor-based and anchor-free, and generate transferable adversarial examples.
PDF 8 pages, 5 figures
论文截图
SPAA: Stealthy Projector-based Adversarial Attacks on Deep Image Classifiers
Authors:Bingyao Huang, Haibin Ling
Light-based adversarial attacks use spatial augmented reality (SAR) techniques to fool image classifiers by altering the physical light condition with a controllable light source, e.g., a projector. Compared with physical attacks that place hand-crafted adversarial objects, projector-based ones obviate modifying the physical entities, and can be performed transiently and dynamically by altering the projection pattern. However, subtle light perturbations are insufficient to fool image classifiers, due to the complex environment and project-and-capture process. Thus, existing approaches focus on projecting clearly perceptible adversarial patterns, while the more interesting yet challenging goal, stealthy projector-based attack, remains open. In this paper, for the first time, we formulate this problem as an end-to-end differentiable process and propose a Stealthy Projector-based Adversarial Attack (SPAA) solution. In SPAA, we approximate the real Project-and-Capture process using a deep neural network named PCNet, then we include PCNet in the optimization of projector-based attacks such that the generated adversarial projection is physically plausible. Finally, to generate both robust and stealthy adversarial projections, we propose an algorithm that uses minimum perturbation and adversarial confidence thresholds to alternate between the adversarial loss and stealthiness loss optimization. Our experimental evaluations show that SPAA clearly outperforms other methods by achieving higher attack success rates and meanwhile being stealthier, for both targeted and untargeted attacks.
PDF
论文截图
Generating Black-Box Adversarial Examples in Sparse Domain
Authors:Hadi Zanddizari, Behnam Zeinali, J. Morris Chang
Applications of machine learning (ML) models and convolutional neural networks (CNNs) have been rapidly increased. Although state-of-the-art CNNs provide high accuracy in many applications, recent investigations show that such networks are highly vulnerable to adversarial attacks. The black-box adversarial attack is one type of attack that the attacker does not have any knowledge about the model or the training dataset, but it has some input data set and their labels. In this paper, we propose a novel approach to generate a black-box attack in sparse domain whereas the most important information of an image can be observed. Our investigation shows that large sparse (LaS) components play a critical role in the performance of image classifiers. Under this presumption, to generate adversarial example, we transfer an image into a sparse domain and put a threshold to choose only k LaS components. In contrast to the very recent works that randomly perturb k low frequency (LoF) components, we perturb k LaS components either randomly (query-based) or in the direction of the most correlated sparse signal from a different class. We show that LaS components contain some middle or higher frequency components information which leads fooling image classifiers with a fewer number of queries. We demonstrate the effectiveness of this approach by fooling six state-of-the-art image classifiers, the TensorFlow Lite (TFLite) model of Google Cloud Vision platform, and YOLOv5 model as an object detection algorithm. Mean squared error (MSE) and peak signal to noise ratio (PSNR) are used as quality metrics. We also present a theoretical proof to connect these metrics to the level of perturbation in the sparse domain.
PDF
论文截图
Attention-Guided Black-box Adversarial Attacks with Large-Scale Multiobjective Evolutionary Optimization
Authors:Jie Wang, Zhaoxia Yin, Jing Jiang, Yang Du
Fooling deep neural networks (DNNs) with the black-box optimization has become a popular adversarial attack fashion, as the structural prior knowledge of DNNs is always unknown. Nevertheless, recent black-box adversarial attacks may struggle to balance their attack ability and visual quality of the generated adversarial examples (AEs) in tackling high-resolution images. In this paper, we propose an attention-guided black-box adversarial attack based on the large-scale multiobjective evolutionary optimization, termed as LMOA. By considering the spatial semantic information of images, we firstly take advantage of the attention map to determine the perturbed pixels. Instead of attacking the entire image, reducing the perturbed pixels with the attention mechanism can help to avoid the notorious curse of dimensionality and thereby improves the performance of attacking. Secondly, a large-scale multiobjective evolutionary algorithm is employed to traverse the reduced pixels in the salient region. Benefiting from its characteristics, the generated AEs have the potential to fool target DNNs while being imperceptible by the human vision. Extensive experimental results have verified the effectiveness of the proposed LMOA on the ImageNet dataset. More importantly, it is more competitive to generate high-resolution AEs with better visual quality compared with the existing black-box adversarial attacks.
PDF
论文截图
Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks
Authors:Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, Matthias Hein
We propose a versatile framework based on random search, Sparse-RS, for score-based sparse targeted and untargeted attacks in the black-box setting. Sparse-RS does not rely on substitute models and achieves state-of-the-art success rate and query efficiency for multiple sparse attack models: $l_0$-bounded perturbations, adversarial patches, and adversarial frames. The $l_0$-version of untargeted Sparse-RS outperforms all black-box and even all white-box attacks for different models on MNIST, CIFAR-10, and ImageNet. Moreover, our untargeted Sparse-RS achieves very high success rates even for the challenging settings of $20\times20$ adversarial patches and $2$-pixel wide adversarial frames for $224\times224$ images. Finally, we show that Sparse-RS can be applied to generate targeted universal adversarial patches where it significantly outperforms the existing approaches. The code of our framework is available at https://github.com/fra31/sparse-rs.
PDF Accepted at AAAI 2022. This version contains considerably extended results in the L0 threat model
论文截图
Well-classified Examples are Underestimated in Classification with Deep Neural Networks
Authors:Guangxiang Zhao, Wenkai Yang, Xuancheng Ren, Lei Li, Xu Sun
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and the growth of margin. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to learning. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verify the theoretical results or through the significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that because our idea can solve these three issues, we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
PDF Accepted by AAAI 2022; 16 pages, 11 figures, 13 tables
论文截图
A Data-driven Adversarial Examples Recognition Framework via Adversarial Feature Genome
Authors:Li Chen, Qi Li, Weiye Chen, Zeyu Wang, Haifeng Li
Adversarial examples pose many security threats to convolutional neural networks (CNNs). Most defense algorithms prevent these threats by finding differences between the original images and adversarial examples. However, the found differences do not contain features about the classes, so these defense algorithms can only detect adversarial examples without recovering the correct labels. In this regard, we propose the Adversarial Feature Genome (AFG), a novel type of data that contains both the differences and features about classes. This method is inspired by an observed phenomenon, namely the Adversarial Feature Separability (AFS), where the difference between the feature maps of the original images and adversarial examples becomes larger with deeper layers. On top of that, we further develop an adversarial example recognition framework that detects adversarial examples and can recover the correct labels. In the experiments, the detection and classification of adversarial examples by AFGs has an accuracy of more than 90.01\% in various attack scenarios. To the best of our knowledge, our method is the first method that focuses on both attack detecting and recovering. AFG gives a new data-driven perspective to improve the robustness of CNNs. The source code is available at https://github.com/GeoX-Lab/Adv_Fea_Genome.
PDF 27 pages, 9 figures, 13 tables
论文截图
Attack Agnostic Detection of Adversarial Examples via Random Subspace Analysis
Authors:Nathan Drenkow, Neil Fendley, Philippe Burlina
Whilst adversarial attack detection has received considerable attention, it remains a fundamentally challenging problem from two perspectives. First, while threat models can be well-defined, attacker strategies may still vary widely within those constraints. Therefore, detection should be considered as an open-set problem, standing in contrast to most current detection approaches. These methods take a closed-set view and train binary detectors, thus biasing detection toward attacks seen during detector training. Second, limited information is available at test time and typically confounded by nuisance factors including the label and underlying content of the image. We address these challenges via a novel strategy based on random subspace analysis. We present a technique that utilizes properties of random projections to characterize the behavior of clean and adversarial examples across a diverse set of subspaces. The self-consistency (or inconsistency) of model activations is leveraged to discern clean from adversarial examples. Performance evaluations demonstrate that our technique ($AUC\in[0.92, 0.98]$) outperforms competing detection strategies ($AUC\in[0.30,0.79]$), while remaining truly agnostic to the attack strategy (for both targeted/untargeted attacks). It also requires significantly less calibration data (composed only of clean examples) than competing approaches to achieve this performance.
PDF
论文截图
Adversarial Robustness in Deep Learning: Attacks on Fragile Neurons
Authors:Chandresh Pravin, Ivan Martino, Giuseppe Nicosia, Varun Ojha
We identify fragile and robust neurons of deep learning architectures using nodal dropouts of the first convolutional layer. Using an adversarial targeting algorithm, we correlate these neurons with the distribution of adversarial attacks on the network. Adversarial robustness of neural networks has gained significant attention in recent times and highlights intrinsic weaknesses of deep learning networks against carefully constructed distortion applied to input images. In this paper, we evaluate the robustness of state-of-the-art image classification models trained on the MNIST and CIFAR10 datasets against the fast gradient sign method attack, a simple yet effective method of deceiving neural networks. Our method identifies the specific neurons of a network that are most affected by the adversarial attack being applied. We, therefore, propose to make fragile neurons more robust against these attacks by compressing features within robust neurons and amplifying the fragile neurons proportionally.
PDF
论文截图
On Brightness Agnostic Adversarial Examples Against Face Recognition Systems
Authors:Inderjeet Singh, Satoru Momiyama, Kazuya Kakizaki, Toshinori Araki
This paper introduces a novel adversarial example generation method against face recognition systems (FRSs). An adversarial example (AX) is an image with deliberately crafted noise to cause incorrect predictions by a target system. The AXs generated from our method remain robust under real-world brightness changes. Our method performs non-linear brightness transformations while leveraging the concept of curriculum learning during the attack generation procedure. We demonstrate that our method outperforms conventional techniques from comprehensive experimental investigations in the digital and physical world. Furthermore, this method enables practical risk assessment of FRSs against brightness agnostic AXs.
PDF Accepted at BIOSIG 2021 conference
论文截图
Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial Examples Against Traffic Sign Recognition Systems
Authors:Wei Jia, Zhaojun Lu, Haichun Zhang, Zhenglin Liu, Jie Wang, Gang Qu
Adversarial Examples (AEs) can deceive Deep Neural Networks (DNNs) and have received a lot of attention recently. However, majority of the research on AEs is in the digital domain and the adversarial patches are static, which is very different from many real-world DNN applications such as Traffic Sign Recognition (TSR) systems in autonomous vehicles. In TSR systems, object detectors use DNNs to process streaming video in real time. From the view of object detectors, the traffic sign`s position and quality of the video are continuously changing, rendering the digital AEs ineffective in the physical world. In this paper, we propose a systematic pipeline to generate robust physical AEs against real-world object detectors. Robustness is achieved in three ways. First, we simulate the in-vehicle cameras by extending the distribution of image transformations with the blur transformation and the resolution transformation. Second, we design the single and multiple bounding boxes filters to improve the efficiency of the perturbation training. Third, we consider four representative attack vectors, namely Hiding Attack, Appearance Attack, Non-Target Attack and Target Attack. We perform a comprehensive set of experiments under a variety of environmental conditions, and considering illuminations in sunny and cloudy weather as well as at night. The experimental results show that the physical AEs generated from our pipeline are effective and robust when attacking the YOLO v5 based TSR system. The attacks have good transferability and can deceive other state-of-the-art object detectors. We launched HA and NTA on a brand-new 2021 model vehicle. Both attacks are successful in fooling the TSR system, which could be a life-threatening case for autonomous vehicles. Finally, we discuss three defense mechanisms based on image preprocessing, AEs detection, and model enhancing.
PDF 17 pages, 15 figures