2023-05-26 更新
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation
Authors:Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu
Score distillation sampling (SDS) has shown great promise in text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models, but suffers from over-saturation, over-smoothing, and low-diversity problems. In this work, we propose to model the 3D parameter as a random variable instead of a constant as in SDS and present variational score distillation (VSD), a principled particle-based variational framework to explain and address the aforementioned issues in text-to-3D generation. We show that SDS is a special case of VSD and leads to poor samples with both small and large CFG weights. In comparison, VSD works well with various CFG weights as ancestral sampling from diffusion models and simultaneously improves the diversity and sample quality with a common CFG weight (i.e., $7.5$). We further present various improvements in the design space for text-to-3D such as distillation time schedule and density initialization, which are orthogonal to the distillation algorithm yet not well explored. Our overall approach, dubbed ProlificDreamer, can generate high rendering resolution (i.e., $512\times512$) and high-fidelity NeRF with rich structure and complex effects (e.g., smoke and drops). Further, initialized from NeRF, meshes fine-tuned by VSD are meticulously detailed and photo-realistic. Project page: https://ml.cs.tsinghua.edu.cn/prolificdreamer/
PDF Project page: https://ml.cs.tsinghua.edu.cn/prolificdreamer/
点此查看论文截图
Interactive Segment Anything NeRF with Feature Imitation
Authors:Xiaokang Chen, Jiaxiang Tang, Diwen Wan, Jingbo Wang, Gang Zeng
This paper investigates the potential of enhancing Neural Radiance Fields (NeRF) with semantics to expand their applications. Although NeRF has been proven useful in real-world applications like VR and digital creation, the lack of semantics hinders interaction with objects in complex scenes. We propose to imitate the backbone feature of off-the-shelf perception models to achieve zero-shot semantic segmentation with NeRF. Our framework reformulates the segmentation process by directly rendering semantic features and only applying the decoder from perception models. This eliminates the need for expensive backbones and benefits 3D consistency. Furthermore, we can project the learned semantics onto extracted mesh surfaces for real-time interaction. With the state-of-the-art Segment Anything Model (SAM), our framework accelerates segmentation by 16 times with comparable mask quality. The experimental results demonstrate the efficacy and computational advantages of our approach. Project page: \url{https://me.kiui.moe/san/}.
PDF Technical Report