2023-03-24 更新
Feature-Conditioned Cascaded Video Diffusion Models for Precise Echocardiogram Synthesis
Authors:Hadrien Reynaud, Mengyun Qiao, Mischa Dombrowski, Thomas Day, Reza Razavi, Alberto Gomez, Paul Leeson, Bernhard Kainz
Image synthesis is expected to provide value for the translation of machine learning methods into clinical practice. Fundamental problems like model robustness, domain transfer, causal modelling, and operator training become approachable through synthetic data. Especially, heavily operator-dependant modalities like Ultrasound imaging require robust frameworks for image and video generation. So far, video generation has only been possible by providing input data that is as rich as the output data, e.g., image sequence plus conditioning in, video out. However, clinical documentation is usually scarce and only single images are reported and stored, thus retrospective patient-specific analysis or the generation of rich training data becomes impossible with current approaches. In this paper, we extend elucidated diffusion models for video modelling to generate plausible video sequences from single images and arbitrary conditioning with clinical parameters. We explore this idea within the context of echocardiograms by looking into the variation of the Left Ventricle Ejection Fraction, the most essential clinical metric gained from these examinations. We use the publicly available EchoNet-Dynamic dataset for all our experiments. Our image to sequence approach achieves an $R^2$ score of 93%, which is 38 points higher than recently proposed sequence to sequence generation methods. Code and models will be available at: https://github.com/HReynaud/EchoDiffusion.
PDF Under Review
点此查看论文截图
Controllable Inversion of Black-Box Face-Recognition Models via Diffusion
Authors:Manuel Kansy, Anton Raël, Graziana Mignone, Jacek Naruniec, Christopher Schroers, Markus Gross, Romann M. Weber
Face recognition models embed a face image into a low-dimensional identity vector containing abstract encodings of identity-specific facial features that allow individuals to be distinguished from one another. We tackle the challenging task of inverting the latent space of pre-trained face recognition models without full model access (i.e. black-box setting). A variety of methods have been proposed in literature for this task, but they have serious shortcomings such as a lack of realistic outputs, long inference times, and strong requirements for the data set and accessibility of the face recognition model. Through an analysis of the black-box inversion problem, we show that the conditional diffusion model loss naturally emerges and that we can effectively sample from the inverse distribution even without an identity-specific loss. Our method, named identity denoising diffusion probabilistic model (ID3PM), leverages the stochastic nature of the denoising diffusion process to produce high-quality, identity-preserving face images with various backgrounds, lighting, poses, and expressions. We demonstrate state-of-the-art performance in terms of identity preservation and diversity both qualitatively and quantitatively. Our method is the first black-box face recognition model inversion method that offers intuitive control over the generation process and does not suffer from any of the common shortcomings from competing methods.
PDF 34 pages. Preprint. Under review
点此查看论文截图
DiffPattern: Layout Pattern Generation via Discrete Diffusion
Authors:Zixiao Wang, Yunheng Shen, Wenqian Zhao, Yang Bai, Guojin Chen, Farzan Farnia, Bei Yu
Deep generative models dominate the existing literature in layout pattern generation. However, leaving the guarantee of legality to an inexplicable neural network could be problematic in several applications. In this paper, we propose \tool{DiffPattern} to generate reliable layout patterns. \tool{DiffPattern} introduces a novel diverse topology generation method via a discrete diffusion model with compute-efficiently lossless layout pattern representation. Then a white-box pattern assessment is utilized to generate legal patterns given desired design rules. Our experiments on several benchmark settings show that \tool{DiffPattern} significantly outperforms existing baselines and is capable of synthesizing reliable layout patterns.
PDF DAC2023 Accepted
点此查看论文截图
MagicFusion: Boosting Text-to-Image Generation Performance by Fusing Diffusion Models
Authors:Jing Zhao, Heliang Zheng, Chaoyue Wang, Long Lan, Wenjing Yang
The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at https://magicfusion.github.io/.
PDF
点此查看论文截图
Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators
Authors:Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, Humphrey Shi
Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data. Our code will be open sourced at: https://github.com/Picsart-AI-Research/Text2Video-Zero .
PDF The project is available at: https://github.com/Picsart-AI-Research/Text2Video-Zero
点此查看论文截图
ReVersion: Diffusion-Based Relation Inversion from Images
Authors:Ziqi Huang, Tianxing Wu, Yuming Jiang, Kelvin C. K. Chan, Ziwei Liu
Diffusion models gain increasing popularity for their generative capabilities. Recently, there have been surging needs to generate customized images by inverting diffusion models from exemplar images. However, existing inversion methods mainly focus on capturing object appearances. How to invert object relations, another important pillar in the visual world, remains unexplored. In this work, we propose ReVersion for the Relation Inversion task, which aims to learn a specific relation (represented as “relation prompt”) from exemplar images. Specifically, we learn a relation prompt from a frozen pre-trained text-to-image diffusion model. The learned relation prompt can then be applied to generate relation-specific images with new objects, backgrounds, and styles. Our key insight is the “preposition prior” - real-world relation prompts can be sparsely activated upon a set of basis prepositional words. Specifically, we propose a novel relation-steering contrastive learning scheme to impose two critical properties of the relation prompt: 1) The relation prompt should capture the interaction between objects, enforced by the preposition prior. 2) The relation prompt should be disentangled away from object appearances. We further devise relation-focal importance sampling to emphasize high-level interactions over low-level appearances (e.g., texture, color). To comprehensively evaluate this new task, we contribute ReVersion Benchmark, which provides various exemplar images with diverse relations. Extensive experiments validate the superiority of our approach over existing methods across a wide range of visual relations.
PDF First two authors contributed equally. Project page: https://ziqihuangg.github.io/projects/reversion.html Code: https://github.com/ziqihuangg/ReVersion
点此查看论文截图
Ablating Concepts in Text-to-Image Diffusion Models
Authors:Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, Jun-Yan Zhu
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability. However, these models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos. Furthermore, they have been found to replicate the style of various living artists or memorize exact training samples. How can we remove such copyrighted concepts or images without retraining the model from scratch? To achieve this goal, we propose an efficient method of ablating concepts in the pretrained model, i.e., preventing the generation of a target concept. Our algorithm learns to match the image distribution for a target style, instance, or text prompt we wish to ablate to the distribution corresponding to an anchor concept. This prevents the model from generating target concepts given its text condition. Extensive experiments show that our method can successfully prevent the generation of the ablated concept while preserving closely related concepts in the model.
PDF project website: https://www.cs.cmu.edu/~concept-ablation/